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POLARIZED LUMINESCENCE OF COMPLEX MOLECULES
IN THE VAPOR PHASE

A,.P,Blokhin, S,P.Pliska, V.A,Tolkachov
Institute of Physics, BSSR Academy of Sciences,Minsk
220602, USSR

ABSTRACT

For the lifetimes of luminescence essentially ex-~
ceeding the mean period of free molecular rotation the
manifestation of intramolecular orientation of absorp-
tion and emission transition dipole moments and of the
principal inertia moments relation in the polarization
of one~ and two-photon excited luminescence and circu-
larly polarized luminescence is analyzed. The degree
of polarization of dinaphtho [2,1-b; 1',2'~d] furan,
BPO, dibenz [def,mno] chrysene, triphendioxazine and
perixanthenoxanthene diluted vapor fluorescence is
measured and by comparison of experimental and calcu-
lated values the intramolecular orientation of fluo-

rescent transition dipole moment is found,

INTRODUCTION

Convincing evidence of the existence of complex
molecule polarized fluorescence in gas phase was ob~
tained through theoretical and experimental studies
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of POPOP (1,4-bis[2-(S-phenyl-oxazolyI]-benzene) va-
pors [1,2]. Nano~ and picosecond lasing with a degree
of polarization up to 1,0 also pointed to the existen-
ce of optically induced anisotropy in POPOP vapors
(1,3,4].

The large inertia moments and intensive intramole-
cular disturbances shade the rotational quantum effects
and allow a classical approach to the description of
reorientation dynamics of complex molecules. In the ap-
proach when the distribution density of the excited mo-
lecules o (T,t) in the rotational phase space T of the
excited state is much smaller than that of the ground
state molecules po(r) the master equation for p(r) is

dp(r,t

{08 4 iir)e(r,e) =-o(r,t)/x +0 (NP (2,8) , (4

where T is the excited state lifetime, L(T) is the
Liouville operator of free rotation, Pa(n,t) is the ra-
te of optical excitation, inducing anisotropy. The so-
lution of eq. (1) for collisionless excited states is

of the general form

p(r,t) = po(r)JPa(n,t-t')exp{-(1_1* ii(r))t'}dt'.(z)

The observed IJth intensity of given polarization is

proportional to the differential cross-section of the

emitting transition o¢(Q) averaged over the phase space
density of excited molecules

We= <a(n)p(l‘.t)>r . (3)

It is shown [1,2,5-6] that the orientational rela-
xation of anisotropic distribution of excited molecules
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in the solution of equation (1) is represented by the
second-rank tensor correlation function calculated for
the asymmetric-top molecules [7]. The analytical form
of the solution [7] permits a detailed study of the
properties of polarized luminescence and induced di-
chroism of molecular vapors, the time dynamics of op-
tically induced anisotropy orientational relaxation as
well as the character of subsequent stationary (residu-
al) anisotropy observed in rarefied vapor fluorescence
when the fluorescence lifetime T exceeds the period
“;;t of molecular rotation (r>>w;;t) o The relaxing
part of anisotropy carries a great deal of information.
As yet no methods of subpicosecond resolution of ani-
sotropy (polarization) measurements have been propoased,
only polarized luminescence caused by the stationary
part of induced anisotropy is discussed below.

One~Photon Excited Luminescence

The stationary part of the second~rank tensor cor-
relation function allows a symmetric expression for the
luminescence anisotropy [5] r = (Wz - W;)/(Wg + ZWé)

2r = 1,((a2-82) (al-v2) + (ad-p?)(ad-vD)) +
(4
+ rp((82-ay(82-v2) + (82-a2)(8i-v}y) )

v r(riady(v3-82) ¢ (vi-adynd-edyy

where the coefficients Tp» Tps T are equal to lumines-
cence anisotropies that could be observed for the co-
incident absorption ﬁa and emisasion ;e transition di-
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pole moments oriented along the A, B, C principal in-
ertia axes, respectively (IA> IB> IC); al, Bys Yl and

@, B2, Y2 are the direction cosines of ¥, and ¥, in

the principal inertia axes. The coefficients r,, rp,
T. are expressed by the stationary components Gi, G;
and Gé of the orientational second-rank correlation

function Cz(t) [5,7] s

= 2 N
Tp,B,C O4Gyp ¢ (5)
GZ' C"" Cn GZ" C"" Cu GZ' C'+ C"
A 1 3 B 2 2 C 3 1
Cy= 3 J £(F,-F,)%de, C,= g J £(F,+F,)%e, C5 J fF3de,
€ €

o) c0 [»]
2
e 2f1-e2, 8542 2(E(A) _ . 2.2 BEQ\)
F.‘ 3[1 € + —62_ € {‘KH 1}], FZ 3e R—&% 1,
241/2 - - -
e k) 1a0%87) 700 1ptle 332 g IcUalp)
’ - ’
T (1102 c TATp~Tc)

A= (1-e2)2pe0s €= s/(1+641/2
K(2), E()) are the complete elliptic integrals of the
first- and second-kind, C;,Z,S are obtained from
C;’2,3 by interchanging IA and IC'
Based on the polarization degree values P,, PB’PC*
which are tabulated in [5] and bearing in mind that
Tm2P/(3-P) it is possible to find the values T,, Ty
and Tee
Thus, the intramolecular orientation of transit-
ion dipole moments and the ratios of principal inertia
moments determine the luminescence anisotropy of comp-
lex molecule vapors when the excited state is collision-

less. The luminescence is unpolarized when ai - 8%- Y%

or ug- Bg- vgor both.
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Fige.1 illustrates the fluorescence anisotropy de-
pendence calculated from (4) and (5) for planar mole-
cules with the principal inertia moment ratio IA/IB -
=1.6 (e.g. perixanthenoxanthene) on the intramolecular
orientation of coincident transition dipole moments for
(az1 =a, By =B, vy =Y, ) (Fig.1la) and with the fluores-
cent transition moment -‘:e fixed (Fig.1b). The isolines
indicate the intramolecular directions of equal aniso-
tropy. The radial coordinate R is the angle between
the transition dipole moment ; and the axis of the co-
ordinate trihedron (a=8«y ); the azimuthal coordinate

is the angle between the projections of : and the
C-axis to the plane perpendicular to the axis o =g = .
It can be seen that the directions of equal anisotropy
form irregular cones around the principal inertia ax-
es.

Thus, the solution of the problem of €inding an
intramolecular orientation of the vibronic transition
dipole moment using experimental polarization spectra
of luminescence is as a rule many-valued, For a pla~
nar molecule, the moments of allowed transitions of

r-electronic system are oriented in its plane and
the space of the moments directions are shown in Fig.1
by the BC curve. In this case the solution is two~ or
four-valued. To reduce or resolve ambiguity additional
information (molecular symmetry consideration, etc.)
is needed.

It has been shown by this method that the fluo-
rescent transition dipole moments of p -quaterphenyl,
perylene and POPOP are oriented along the C-axes [8].
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FIG. 1. Perixanthenoxanthene., Anisotropy of diluted
vapor luminescence as a function of intramole-
cular transition moment orientations
(a) absorbing and emitting oacillators coin-
cide;

(b) luminescent Olo:l.l‘l,ator is fixed in the mo-
lecular plane at 33.5 to the C-axis
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We have studied the 2-(4-biphenylyl)-5-phenyloxa-
zole (I), dinaphtho [2,1-b; 1,2-d] furan (II), tri-
phendioxazine (IIX), dibenz [def, mno | chrysene (IV)
and perixanthenoxanthene (V). The condensed polycyclic

B

o0tg 88+ exro:

I il ?

molecules II-V are planar. The toraional vibrations
of BPO molecule cannot essentially change the intra-
molecular orientation of the C-axis. The calculated
degree of fluorescence polarization of BPO vapor when
fluorescent and absorptive transition moments coinci-
de and are oriented along the B~ or C-axis is 4.3%
and 10.6%, respectively. The experimental value is
8.2%, which is indicative of the transition moment
direction along the C-axis.

The fluorescent transition dipole moments of mole-
cules (IX) and (III) are oriented along the B- or C=-
axis due to molecular symmetry. The calculated degree
of fluorescence polarization of substance II diluted
vapors when the dipole moments are oriented along the
B~ or C-axis is 4.9% and 9.6%, respectively. Low fluo-
rescence polarization of isotropic rigid solution
(ether + isopentane + ethanol, 5315:2, 90°K) (32%)
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shows that the fluorescent tranaition is composed of
two orthogonal partial transition moments. According
to this, the recalculated values of polarization [ﬂ
are 4.5% and 6.2%. So, the experimental value 5.5% is
indicative of orientation along the C=axis.

The calculated 10.6% (C), 4.3% (B) and experimen-~
tal 10,.7% degree of polarization of triphendioxazine
vapor fluorescence indicate the C-axis transition mo-
ment orientation.

The lower symmetry of planar anthanthrene (IV)
and perixanthenoxanthene (V) molecules allows any ori-
entation of the transition dipole moment. Molecules
and r

IV and V have the same coefficients r due

s T
to practically equal ratios of the p;;nc;;al ine:iia
moment s, The observed value of fluorescence polariza-
tion of substance IV vapors is low (2.5%), giving the
transition moment orientation i¢z° and i§4° to the
C-axis. The direction of the fluorescent transition
dipole moment is 43o as calculated from the atomic
function density data [10]. Similarly, the measured
degree of substance V fluorescence polarization is 4%,
corresponding to the moment orientation t;4° and _-l;76o
to the C~axis. Due to the similarity between the v -
=electron structures and the spectra of these molecu-
les and the planar configuration of 1, 1-dinaphthyle
(10,11], substance V has preferably orientation 34°.
The polarization spectra of compounds I, II and
V confirm the identity of the long-wave absorptive and
fluorescent transition dipole moments and constant
orientation within the corresponding bands (Fig.2).
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FIG. 2. The polarization spectra of fluorescence (1)
and absorption (2) of perixanthenoxanthene
(a), dinaphtho [2,1-b; 1,2=d] furan (b) and
BPO (c) vapors. The arrows mark the excitat-
ion and observation wavelengths.

Circular Polarized Luminescence

The circular polarized luminescence of the opti-
cally active molecules in condensed phase is a well
studied phenomenon. It is known to be determined by the
scalar product of the magnetic ;m and electric ;e di-
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pole moments of theeectronic transition. The circular
polarized luminescence is measured by the dissymmetry

factor
W,- W
g'zthwﬁ, (6)

where WL and WR are the left- and right-hand pola-
rized components of the luminescence intensity. When
rotational relaxation is introduced by second-rank
orientation correlation functions, the dissymmetry
factor is expressed in the form [6]

49em Z,Wa(t't')e't T (@ R)+k(IC, (5,8, 0,5t N ae !

g(t)= y s
L] - )

o, I)Wa(t-t et TO+K(n)C, (i, g5t ))at -
vhege Wa %n the exciting light intensity,aem-iueum, Og"Hgs
e= 35: m= iﬂrxtn)il the parameter determined by expe-

e m

riment geometry, Cz(ﬁa,ﬁe,ﬁm;t') and Cz(ﬁa,ﬁe;t')
are the second-rank orientation correlation functions,
The factor K(n) for the linearly polarized exciting
radiation with the angle n between the electric vector
of exciting light and the observation direction is

K(n) = % (Scoszn -1 (8)

The form of the expression for the dissymmetry factor
is as for the isotropic distribution of excited mole-

cules,

g = =" (3.i) (9)
e

when 3co.2n =1,
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For the stationary collisionless conditions the
dissymmetry factor (7) becomes

4o, ((em) + K(MC, (S )

[
a’e’m

. (10)
%e (1 + K(MC, 0, %))

g.

<>
Here, CZ("a’;e’;m) and Czcﬁa,ﬁe) are the statio-
nary components of the orientation correlation funct-

ions!

> > > 2 2

2C, (i, g i) = G5((a7-83) (ajapv,7p)* (aga,-8,8,) (a2-v))w
2,002_ 2 2

+ GB((B‘I-GI)(BZBM-YZYM)*(BZBM-GZGM)(81_Y‘12)) + (11)

2 2 2 2
+ Gc((71'“1)(727m-328m) + (Yz'Ym'czum)(YA'-B%)) ’

where a ,8 are the direction cosines of the

m? 'm
magnetic transition dipole moment. Cz( ;a’;e ) 18 ob-~

> > >
tained from C, (Mgs¥erlip)  dfa =g 8, =8 , Yy vy s

G:, G:, GZ are given in (5). One can see from this exp-

ression that circular polarized luminescence for free
molecules depends not only on the value of electric
and magnetic transition dipole moments and on the an-
gle between them, but also on their intramolecular
orientation.

It is interesting that relations (10) and (11)
result in a dissymmetry factor of the form (9) when

2 2 2
oy = B,- Yy or a0, = BZBm- YaYn OF both.

Two-Photon Excited Luminescence

The intensity of an arbitrary linearly polarized
component of two~photon excited luminescence of iso-
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tropic nonrigid media W is presented as a function
of seven independent molecular parameters Ms[131
which are transformed as unreducible second-rank ten-
sors (contrary to rigid media [12])

W(t) = Z P M s (12)
s=1

where P are coefficients introduced only by the ex-
periment geometry

Py 1, P= 3E 21522

2 2 pq(lqe), 3 13 (3()‘)") - 1),

P,=

20 2 202,035 2
s Ej (3(;-\,) 1), Pe= & qu(z(w. v)©- 1),

5 (13)

2
5

Pem § Epq (i) @e0)- 3(R+30),  ppm Ip EZZ(32-9)%-n),
J

e 1J 2. - 1)p*qc 0 JZO /CJ 0 JZO T g1
Pq 1pl-p 1q1-q 1010 1010’ 1* "2 ’
1, p+q 1 10
Epg™ (-1 C1pI-pc1q1-q ’
Since Cf}?‘ q e the Clebach-Cordon coefficients, p

and qQ are equal to 0, 1 and -1 for the linear, right-
and left-hand circular polarization of exciting light,
x s v are unit vectors of exciting and emitted pho-
tons polarization, respectively (for circularly pola-
rized light, .{ and b.;. are oriented along the wave
vector), E is a vector produced by components £

e (Kedape s [Tyl . (14)
In (12), the first three molecular parameters

M= 8, M= 8p- &y, Mg= 7(8p= 8,) - 3 & (15)
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are functions consisting of McClain parameters of ab-
sorption anisotropy $p, 8, , &y | 12| . The other M,
are the orientational correlation functions of the
unreducible second-rank tensors composed of the two-
-photon absorption tensors Tij [12] and of the vector
of emitting oscillator :e [13] . For the stationary li-

mit they have the form

M= €, (1203, Me= C, (T3 ) ,
- 11 - 22 + (16)
Mg= C,(T'',3.), M= €, (T*4,80)
with
J.J J,J J,J
172 > 2 1722, 2 2 12,2 2
c (T s¥e ) GOOSO(T )So(ue)’Gzzszo(T )Szo(ue)"
J.J J.J
2 172,42
+ 620830t T Hsia,) ¢ sEer Vst @), 13 (17)
where symmetrized second-rank tensors sﬁo(r ! 2) are

the functions of the components of two-photon absorpt-

ion tensor

TJ1J2- i J,O J (o] ’
m,n,i ke=1 1m11 1n1k mn 1k

and S (u ) are the functions of orientation of the
transit1on dipole moment of emission [13].

2z

2 _ 2 2.1 2.2 2 . 1 22
Goo™ © G (2Gy*2Gy-G(), G207 172G~y

c’ 227 3
It can be seen from relationships (12) to (17)
that the polarization indicatrix for a given direct-
ion of two-photon excited luminescence has a rather
complex form., Since the coefficients at M. in (12) de-
pend on the experiment geometry, one can find them by
seven experiments of different geometries.
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1

05 1% /%

FIG. 3. The polarization degree of two-photon excited
luminescence of planar rigid molecules in a
vapor phase as a function of the inertia para-
meter 1-I /IB when the first (i) and second
(3) absorptive and luminescent (k) transition
dipole moments are directed along the main
inertia axes (ijk): 1mAAA; 2=CCC; 3=BBB;
4=ABA=BCC; 5=ACA=BCB; 6=ABB=ACC; 7=ACB; 8wABC;
9wCBA; 10=AABwBBA; 11=BBC~CCB; 12=AAC=CCA,.
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So, with the aid of the above relationships the
degree of luminescence polarization can be calculated
provided that the intramolecular components of the
two=-photon absorption tensor and the direction of the
luminescent transition moment are known. Fig.3 shows
polarization of two-photon excited luminescence of
planar molecules as a function of the inertia parame-
ter I-IC/IBwhen the transition dipole moments are
oriented along the principal inertia axes and the ex~
citing photons are equal and polarized linearly and in
parallel.

The parallel transition dipole moments (AAA) re-
sult in the highest polarization degree (20%). The
highest negative value (-13%) is predicted for parallel
absorptive transition moments oriented along the A -
-axis and the luminescent transition moment oriented
along the C-axis or v.v. (AAC=CCA). When the orienta-
tion of absorptive transition dipole moments is ortho-
gonal the polarization is between -3.5% and 2%.

CONCLUSIONS

We have shown that polarization of complex mole-
cule luminescence in diluted vapors depends not only
on the mutual orientation of the transition dipole mo-
ments but on its intramolecular orientation and on the
principal inertia moments relation, too. In the statio-
nary approach the dependences are represented by three
products of the same inertia factors for all the kinds

of luminescence described and simple linear functions
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intramolecular components of the transition dipole

moment s,

1.

2.

3.

4.
5.

6.

7.
8.

9e

10.
11.
12.

13.
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